
Abstract. To gain some insight into the structure and
physical significance of the multiple solutions to the
coupled-cluster doubles (CCD) equations corresponding
to the Pariser–Parr–Pople model of cyclic polyenes,
complete solutions to the CCD equations for the 1A�1g
states of benzene are obtained by means of the homo-
topy method. By varying the value of the resonance in-
tegral b from –5.0 to –0.5 eV, we cover the so-called
weakly, moderately, and strongly correlated regimes of
the model. For each value of b, 230 CCD solutions are
obtained. It turned out, however, that only for a few
solutions a correspondence with some physical states
can be established. It has also been demonstrated that,
unlike for the standard methods of solving CCD equa-
tions, some of the multiple solutions to the CCD equa-
tions can be attained by means of the iterative process
based on Pulay�s direct inversion in the iterative sub-
space approach.

Keywords: Coupled-cluster method – Coupled-cluster
doubles equations – Multiple solutions – Homotopy
method – Pariser–Parr–Pople model of benzene

Introduction

The understanding of the electronic correlation effects
in cyclic polyenes (or [M]annulenes, with the chemical
formula CMHM, where M=4m0+2, m0=1,2,...) has
attracted considerable interest for many years. To some
extent this interest has been caused by the fact that these
molecules provide models for extended one-dimensional
metallic-like systems which epitomize the difficulties
encountered in the description of extended many-elec-
tron systems. A very useful tool in these studies proved

to be the coupled-cluster (CC) method [1]. Even its
simplest variant, the CC method with double excitations
(CCD) [1], is able to reproduce most of the electronic
correlation effects. More sophisticated CCSD [2] and
CCSD(T) [3] methods provide often quite accurate ap-
proximations to the full configuration-interaction (FCI)
results (which define the limit for a given orbital basis
set). The CC method furnishes a set of coupled nonlinear
inhomogeneous equations of unknowns representing the
amplitudes of the CC operator T̂T (the t amplitudes), in
which the number of equations is equal to the number of
unknowns. However, owing to their nonlinearity, the
CC equations have multiple solutions; this problem was
first analyzed by �ZZivković and Monkhorst [4, 5]. Little is
still known about the mathematical properties of these
solutions.

Recently [6, 7, 8, 9], for the first time, some insight
into the structure of the complete set of solutions to the
CC equations has been gained by applying the powerful
homotopy (continuation) method [10, 11] to the CCD
and the CCSD equations corresponding to some four-
electron four-orbital systems, known as the H4 and P4
models [12]. These studies included the correspondence
between CC and CI methods [7], and the influence of the
approximate form of the cluster operator on the struc-
ture of solutions of the associated equations [8]. Within
the symmetry and spin-adapted CCD formalism, the
CCD equations for the H4 model comprise a system of
six coupled quadratic inhomogeneous equations for
six unknowns (the t2 amplitudes of the double-exci-
tation operator T̂T 2). According to the Bézout theorem,
the maximum number of solutions amounts in this case
to 26=64. Yet Kowalski and Jankowski [6] showed that
the CCD equations for the H4 model case have only 12
solutions (six real, and three pairs of complex solutions).
Some of these solutions corresponded to the variational
results of the CI with doubles method.

In the present paper we study, by means of the
homotopy method, multiple solutions of the CCD
equations for the six-electron six-orbital system cor-
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responding to the Pariser–Parr–Pople (PPP) [13, 14,
15] model of benzene. This system is of special interest
for theoretical chemists: the sextet of p electrons is
responsible for the peculiar chemical properties of
benzene, which is the archetypal aromatic molecule.
The PPP model is known to provide a simplified yet
reliable picture of many-electron systems [16]. For
benzene, one gets an almost perfect description of the
p-electron part of the excitation spectrum by opti-
mizing the empirical parameters of the PPP model at
the FCI level [17, 18]. Moreover, in the PPP model the
strength of the electronic correlation effects can be
controlled without changing the molecular geometry,
by simply adjusting the value of the so-called reso-
nance integral b (<0). Very high symmetry of the PPP
benzene model ensures that the number of symmetry-
independent parameters entering the exact (FCI) or
an approximate (e.g., CCD) wave function is small.
All that makes the PPP benzene model particularly
suitable for testing quantum-chemical methods dealing
with the electronic correlations.

Benzene is the first member of the [M]annulene
family for which, as mentioned earlier, the under-
standing of the electronic structure is of rather general
significance. These systems, especially when described
within the PPP model, seem deceptively simple: their
one-electron states are fully determined by the spatial
symmetry, and so is their Hartree–Fock (HF) deter-
minantal wave function. Yet [M]annulenes turn out to
be a challenge to the existing computational methods
of treating the electronic correlations: it has been found
that for larger [M]annulenes (corresponding to m0>2),
in the so-called strong correlation regime of b, the
CCD method breaks down completely, as no real so-
lution of the CCD equations exists for b greater than
some critical value [19, 20]. A recent CC study of
[M]annulenes, taking into account the double (D), tri-
ple (T), and quadruple (Q) excitations in the CC op-
erator, showed that even the CCDTQ method breaks
down for these systems when the correlation effects
become sufficiently strong [21]. For the PPP benzene
model, a real CCD solution representing the ground
state can be found for any b £ 0. However, as b
approaches 0, the CCD t2 amplitudes deviate more
and more from the corresponding FCI values, thus
suggesting that some correlation effects peculiar to the
higher [M]annulenes may surface already in the
strongly correlated regime of the PPP benzene model.
This provides an additional motivation for the present
study.

PPP model of benzene

A detailed description of the PPP model of annulenes
may be found in Ref. [21]. In benzene the C atoms
form a regular hexagon, and the C–C bonds are as-
sumed to be of the length R0=1.4 Å. The PPP model
invokes the p-electron approximation and describes the
six p electrons of benzene by using a minimal basis set

of 2pz atomic orbitals associated with the six carbon
atoms. The set of these p atomic orbitals (p AOs) is
then subject to the symmetrical orthonormalization
procedure of Löwdin [22], yielding the set of six ortho-
normalized p atomic orbitals (p OAOs), denoted by
vm, m=0, ±1, ±2, 3 (we use here the numbering system
employed in Ref. [21]). The Fock–space Hamiltonian
ĤH for benzene, built according to the prescriptions of
the PPP model, is given in Eq. (2) of Ref. [21]. The
following semiempirical parameters are used in the PPP
model:

1. a, the so-called Coulomb integral for the carbon atom,
representing the binding energy of the electron
described by the p OAO vm (for simplicity we put
a=0 eV),

2. b(<0), the resonance integral, corresponding to the
electron transfer between the neighboring p OAOs, vm
and vm+1 (our results are for b=–5.0, –4.0, –3.0, –2.5,
–2.0, –1.5, –1.0, and –0.5 eV).

3. cmn, representing the two-center two-electron integrals
Ævmvn|vmvnæ; usually one calculates cmn=c(Rmn),
where Rmn is the distance between the centers of
orbitals vm and vn and the function c(R) is given by
some simple analytical formula. We use the Mataga–
Nishimoto formula [23], c(R)=e2[R+e2(c0)–1]–1,
where e is the electron charge and c0=c(0)=
10.84 eV. The point-symmetry group of benzene is
D6h, but its subgroup C6 is sufficient for the symmetry
considerations in the p-electron approximation. The
molecular orbitals of the p symmetry (pMOs),
expressed as linear combinations of p OAOs, are
completely determined by the projections onto the
irreducible representations of the C6 group, and read
as

wk ¼ 6�1=2
�
v0 þ ekpi=3v1 þ e�kpi=3v�1 þ e2kpi=3v2

þ e�2kpi=3v�2 þ ekpiv3
�
;

ð1Þ

where k=0,±1,±2, 3 stand for the symmetry labels.
For k „ 0,3 the p MOs are complex, wk*=w–k, and,
owing to the time-reversal symmetry, correspond to
degenerate orbital energies, e(k)=e(–k). In the
restricted HF (RHF) description of the ground state
of benzene, the occupied p MOs correspond to
k=0,±1 and the unoccupied p MOs to k=±2, 3.
The formulas for the orbital energies and the HF
p-electron energy read as [21]

e kð Þ ¼ 2b cos kp=3ð Þ þ c0

� v kð Þ þ v k þ 1ð Þ þ v k � 1ð Þ½ �; ð2Þ

EHF ¼ 8bþ 3c0 � 3v 0ð Þ þ 4v 1ð Þ þ 2v 2ð Þ½ �: ð3Þ
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These formulas depend on parameters b, c0, and the
two-electron integrals calculated in the p MO basis:

v qð Þ ¼ v �qð Þ ¼ hwk1þq
wk2�q
jwk1wk2i

¼ 6�1
h
c0 þ 2 cos qp=3ð Þc R0

� �

þ2 cos 2qp=3ð Þc
ffiffiffi
3
p

R0
� �

þ cos qpð Þc 2R0
� �i

; ð4Þ

where q=0,1,2,3, and the modulo-6 rule of addition is
assumed for the symmetry labels.

CCD method for the PPP model of benzene

In the standard single-reference CC theory, the ground-
state FCI wave function, w, for a six-electron system is
represented as

w ¼ exp T̂T
� �

U; ð5Þ

whereT̂T ¼ T̂T1 þ T̂T2 þ � � � T̂T6 is the CC operator and F is
the RHF determinantal wave function, playing the role
of the reference configuration. The T̂Tn components of
the CC operator correspond to the connected n-tuple
excitations from occupied to unoccupied spin-orbitals.
Each T̂Tn operator depends on some linear parameters,
hereafter referred to as the tn amplitudes; the ordered
set of all tn amplitudes form a vector denoted by tn. In
the CC theory one introduces a similarity-transformed
Hamiltonian, �̂HH�HH ¼ exp �T̂T

� �
ĤH exp T̂T

� �
, whose ampli-

tudes �hhpg:::
rs::: are certain connected functions of the

amplitudes of the Fock-space Hamiltonian, and the tn
amplitudes. The electronic correlation energy for the
ground-state Y may be calculated in the CC theory as

Ecorr ¼ hUj �̂HH�HH jUi � EHF ¼ �hh t1; t2ð Þ � EHF; ð6Þ

i.e., it is a function of only t1 and t2 amplitudes. The tn
amplitudes (n=1,2,...,6) may be calculated by solving
the set of CC equations:

hUa
i j �̂HH�HH jUi ¼ �hha

i t1; t2; t3ð Þ ¼ 0; ð7aÞ

hUab
ij j �̂HH�HH jUi ¼ �hhab

ij t1; t2; t3; t4ð Þ ¼ 0; ð7bÞ

..

.

hUabcdef
ijklmn j �̂HH�HH jUi ¼ �hhabcdef

ijklmn t1; t2; t3; t4; t5; t6ð Þ ¼ 0; ð7cÞ

where Uab:::
ij::: is an n-tuply excited configuration. Written

in an explicit form, the CC equations (Eqs. 7a, 7b, 7c)
form a set of coupled inhomogeneous nonlinear equa-
tions, with the number of unknowns (the tn amplitudes)
equal to the number of equations. On the basis of the
FCI method, it can be shown that the exact tn ampli-
tudes are real. In the simplest approximate variant of
the CC method, the CCD one, one puts T̂T ¼ T̂T2 and

neglects the t1, t3, and t4 amplitudes in Eqs. (6) and (7b)
(as well as the remaining CC equations). The CCD
equations (Eq. 7b) then become a set of coupled inho-
mogeneous quadratic equations for the unknown t2
amplitudes, and from Eq. (6) an approximate correla-
tion energy, ECCD

corr , is calculated.
In the PPP model of benzene the occupied and

unoccupied orbitals belong to different representations
of the C6 group, which causes T̂T1 and T̂T5 to vanish by
symmetry. Because t1=0, the RHF function F becomes
equal to the Brueckner determinantal function [24]. In
this case Eq. (7a) is automatically satisfied, and the
CCD method becomes equivalent to the CCSD one.
When the nonorthogonal spin adaptation of the CCD
equations is performed [25], the spin-adapted t2 ampli-
tudes for benzene may be written as t(k1,k2,q), where k1
and k2 are occupied-p MOs labels, and q (‡0) is chosen
such that k1+q and k2 ) q are unoccupied-p MOs labels
[21]. It can be shown that there are 11 different sets of k1,
k2 and q, thus defining 11 t2 amplitudes for benzene. By
assuming that these amplitudes are real and employing
the time-reversal symmetry, one finds a symmetry con-
straint [21]

t k1; k2; qð Þ ¼ t �k2;�k1; qð Þ; ð8Þ

which reduces the number of symmetry-independent t2
amplitudes for benzene to 8.

In Ref. [21] we employed the general nonorthogo-
nally spin-adapted CCD equations for the PPP model
of the [M]annulenes, with the t2 amplitudes t(k1,k2,q)
subject to the symmetry constraint (Eq. 8). For benzene,
the set of these equations may be written as

ai þ
X8
j¼1

bijxj þ
X8
j¼1

X8
j¼1

cijkxjxk ¼ 0; ð9Þ

where i=1,2,...,8, and the unknowns xj, j=1,2,...,8 stand
for the symmetry-independent t2 amplitudes (Table 1).
The formula for the electronic-correlation energy now
reads as

ECCD
corr ¼

X8
j¼1

djxj: ð10Þ

Table 1. Correspondence between indices of Eq. (9) and quasimo-
mentum indices k1, k2, and q

i k1 k2 q

1 1 –1 1
2 0 0 2
3 1 –1 2
4 1 0 2
5 –1 1 3
6 0 0 3
7 0 1 3
8 1 1 3
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The linear coefficients in Eqs. (9) and (10): ai, bij (for
i „ j), cijk=cikj, and dj can be expressed as some linear
combinations of the two-electron integrals defined in
Eq. (4). Only the diagonal elements bii depend on
parameter b:

bii ¼ Dei � 2v 0ð Þ; ð11Þ

where

Dei ¼ De k1; k2; qð Þ ¼ e k1 þ qð Þ þ e k2 � qð Þ
� e k1ð Þ � e k2ð Þ; ð12Þ

through the dependence on b of the orbital energies
(Eq. 2). There is still some symmetry hidden in the
set of CCD equations (Eq. 9): owing to the so-called
alternancy symmetry of the PPP Hamiltonian ĤH (see
Ref. [26], and references therein) one finds that

x2 ¼ t 0; 0; 2ð Þ ¼ t 1;�1; 2ð Þ ¼ x3 ð13Þ

(for the general formula for [M]annulenes, see
Ref. [21]). This property propagates into Eq. (9) mak-
ing them invariant with respect to the interchange of
indices 2 and 3. However, our set of CCD equations is
not explicitly adapted to the alternancy symmetry, and
solutions breaking this symmetry are, in principle,
possible.

The usual method of solving the CCD equations is
based on an iterative procedure, which in the case of
Eq. (9) may be written as follows:

x nþ1ð Þ
i

¼� Deið Þ�1 aiþ
X8
j¼1

bij�Deidij
� �

x nð Þ
j þ

X8
j¼1

X8
k¼1

cijkx nð Þ
j c nð Þ

k

" #
;

with x 0ð Þ
i ¼ 0, i=1,2,...,8. The first iteration furnishes

t2 amplitudes that substituted into Eq. (10) give the
second-order Møller–Plesset (MP2) correlation energy.
When convergent, this simple iterative procedure
provides a single solution to the CCD equations
(Eq. 9). Such a solution is bound to be real and to
preserve the alternancy symmetry, which corresponds
to the fulfillment of Eq. (13). In our calculations for
the PPP model of benzene with b 2 [–5.0 eV, 0 eV],
we found that the previously described simple iterative
procedure is indeed convergent, and the correlation
energy, calculated by substituting the convergent
t2 amplitudes into Eq. (10), approximates the FCI
value for the ground state. The agreement between the
CCD and FCI results (t2 amplitudes and Ecorr) is very
good in the weakly and moderately correlated regimes
(b in the vicinity of –5.0 and –2.5 eV, respectively),
but becomes rather poor in the strongly correlated
regime (b>–0.5 eV). The CCD and FCI results
for b=–2.5 eV and b=–0.5 eV may be found in
Ref. [21].

Multiple solutions of CCD equations for benzene

The CCD equations (Eq. 9) comprise a set of eight
coupled quadratic inhomogeneous equations (with real
coefficients) for eight unknowns. According to the Béz-
out theorem, such equations may have up to 28=256
solutions, complex in general. In principle, a complete
set of solutions can be found by means of the homotopy
(continuation) method [10, 11]. In the following we
present the results obtained by applying the homotopy
method to the CCD equations (Eq. 9) corresponding to
various values of the resonance integral b: from –5.0 eV
(representing the weakly correlated regime) to –0.5 eV
(representing the strongly correlated regime). The FCI
results used for comparison were calculated with
GAMESS [27].

Equation (9) was derived by taking into account
the spin and the time-reversal symmetries, as well as the
reality of the t2 amplitudes, see Eq. (8). However, these
equations may have also complex solutions. Such solu-
tions have to appear in pairs: if x=(x1, x2,...,x8) is a
complex solution, then its complex conjugate x* is also a
solution. For a complex solution, the correlation energy
calculated from Eq. (10) assumes (in general) a complex
value, and the complex-conjugate solutions correspond
to the complex-conjugate values of the correlation en-
ergy. Pairs of complex solutions, x and x*, will be called
degenerate, since they correspond to the same real part
of the complex correlation energy calculated from
Eq. (10). Some solutions may also violate the equality
(Eq. 13) derived from the alternancy symmetry. Such
symmetry-broken solutions, for which x2 „ x3, also have
to appear in pairs: if x is such a solution, then x¢, in
which the values x2 and x3 are interchanged, has to be a
solution as well. Pairs of the real symmetry-broken so-
lutions, x and x¢, are also degenerate. In the case of the
general complex symmetry-broken solutions, x and x*,
x¢ and x¢* form a degenerate quadruplet. We have
found, however, a special class of complex symmetry-
broken solutions in which the only complex values
correspond to x2=x3*. In such a case one has x*=x¢,
and the pair of solutions x and x¢ corresponds to the
same real value of the correlation energy calculated from
Eq. (10). Thus, the solutions of Eq. (9) may be classified
into five distinct categories: real symmetric (which are
nondegenerate), real symmetry-broken, complex sym-
metric, general complex symmetry-broken, and a special
class of complex symmetry-broken with the real energy.

The number of CCD solutions belonging to different
categories is presented in Table 2 for several values of the
resonance integral b. The total number of solutions (230)
is surprisingly large: it is only slightly smaller than the
Bézout upper bound (256), and much larger than the
number of solutions for the H4 model (six real and six
complex, compared to the upper limit of 64 allowed by the
Bézout theorem [6]). The number of CCD solutions is also
much larger than the number of FCI solutions for the PPP
model of benzene, having the same symmetry as the RHF
wavefunction F, see further discussion. This implies that
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most of the CCD solutions have no physical meaning.
Since the FCI method is equivalent to the full CC (FCC)
method, it is interesting that the CCD equations, which
have a smaller order and a smaller number of unknowns,
have more solutions than the more sophisticated FCC
equations. This suggests that the truncated CC equations
are unable to utilize all the symmetries that are present in
the many-electron Hamiltonian. For the H4 model it was
observed [8] that the number of solutions increased from
CCD (12 solutions) to CCSD (60 solutions), and then
decreased to 7 for FCC.

While for theH4model the number of pairs of complex
solutionswas equal to the number of real solutions, for the
PPPmodel of benzene there are muchmore complex than
real solutions. Since all the FCI results are real, the com-
plexity of the solutions must be caused by the truncation
of the CC operator. Since all the linear coefficients in the
CCD equations (Eq. 9) are real, each complex solution
must have its complex-conjugate counterpart. However,
while solving these equations by using the homotopy
method, we found in several instances that some complex-
conjugate solutions were missing (duplicated solutions
were also encountered). Since the problem has not been
previously reported, we think that it may have arisen
owing to the numerical complexity of the problem (a lot of
roots to be traced in the homotopy algorithm). It brings
into question whether the CCD solutions presented here
are complete. After removing duplicates and adding so-
lutions thatmust be present owing to symmetry, we found
that the total number of states is constant (equal to 230)
for each considered value of b. The number of solutions
preserving the alternancy symmetry also appeared to be
constant (equal to 124). It seems therefore unlikely that
certain states have been overlooked.

Owing to the alternancy symmetry of the PPP model,
the six-electron symmetry states of benzene split into
two categories, denoted by ‘‘minus’’ and ‘‘plus’’ [28].
Including the spin symmetry and the spatial symmetry of
the D6h group, the ground-state RHF wave function F
corresponds to the symmetry label 1A�1g. Among 400
FCI states of benzene generated by GAMESS [27] there are
only 18 states corresponding to the 1A�1g symmetry.
These m 1A�1g states (m=1,2,...,18) are, in general, non-
orthogonal to F, and thus may be expressed in the form
of the CC expansion (Eq. 5). For each case, the corre-
sponding tn amplitudes may be extracted from the FCI

linear coefficients: there are seven t2 amplitudes, two t3
amplitudes, seven t4 amplitudes, and only a single t6
amplitude (only nonredundant parameters are counted).

We are interested in identifying solutions to the CCD
equations which have physical significance, i.e., which
correspond to some states of the1A�1g characteristic repre-
sented in the model by relevant solutions to the
FCI equations. In order to gauge a similarity between the
tCCD2 amplitudes corresponding to a given CCD solution
and the tFCI2 amplitudes corresponding to some FCI
solution of the 1A�1g symmetry, we use parameters h and:
g defined below:

h ¼ arccos
tCCD2 tFCI2

tCCD2

�� �� tFCI2

�� ��
 !

; g ¼
tCCD2

�� ��
tFCI2

�� �� ; ð15Þ

where we use the real part of the amplitudes tCCD2 . Here
h measures the angle between the vectors, and g the ratio
of the vector lengths; in the analysis we use the vectors
corresponding to the full set of t2 amplitudes (of the
dimension 11), i.e., containing the symmetry-redundant
amplitudes fulfilling Eq. (8). In principle, a complex
solution may be considered an approximation to some
real solution of the FCI equations as long as the imag-
inary parts of the t2 amplitudes are small in comparison
to the real parts.

Some of the CCD solutions, obtained for several
values of b, are characterized in Table 3. Solution
numbers nCCD are assigned in accordance with the in-
crease (of the real part) of the corresponding correlation
energy value calculated from Eq. (10). For instance,
nCCD=005 denotes the fifth solution. Owing to the large
number of solutions, we consider only those that are the
closest to some FCI ones, i.e., those corresponding to h
and g closest to 0 and 1, respectively. (The complete set
of solutions may be obtained from the authors.)

Solution 005 for each of the b values (except for
b=)4.0 eV, where it is solution 007) is considered to be
the ground state [19, 20], and can be obtained by ap-
plying the standard iterative process of Eq. (14). Indeed,
this solution is the most similar to the FCI ground state
1 1A�1g for all the b values studied (in the strongly
correlated region the similarity is, however, rather poor
[21]). Except for that state, there is little similarity
between the CCD solutions considered and the FCI
states, both in energy and amplitudes.

For all values of b the state corresponding to the
ground state has, in fact, an energy larger than some of
the other CCD solutions. We found a pair of real sym-
metry-broken ‘‘underground’’ solutions that have the
correlation energy ranging from –265.333498 eV for
b=–5.0 eV to –165.644985 eV for b=–0.5 eV. More-
over, for each b there is a pair of complex symmetric
solutions (except for b=–4.0 eV, where there are two
pairs of such solutions) with the real part ofECCD

corr lower
than the ground-state CCD value. For instance, for
b=–0.5 eV one has ECCD

corr =–13.907202±i12.763757 eV,

and for b=–5.0 eV ECCD
corr =–3.892588±i110.045436 eV.

Table 2. Numbers of states of different symmetry for various b
given in electron volts

–5.0 –4.0 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5

Real, symmetric 8 8 6 6 6 8 4 6
Real, broken symmetry 24 20 20 24 24 22 20 16
Complex, symmetric 116 116 118 118 118 116 120 118
General complex,
broken symmetry 80 84 84 80 80 84 84 88
Special complex,
broken symmetry 2 2 2 2 2 0 2 2
Total 230 230 230 230 230 230 230 230
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All the ‘‘underground’’ solutions do not resemble any of
the FCI states; such solutions have not been observed
for the H4 model.

Since the standard method of obtaining CCD solu-
tions is via an iterative procedure (Eq. 14), it may be
useful to study the performance of this procedure in
attaining multiple solutions when starting from various
CCD solutions obtained by the homotopy method.
Obviously, if the solutions were exact, the iterations
would stop after the first iteration. However, the small
errors in the numerical values would lead to a nontrivial
iteration sequence. The question is whether this se-
quence is convergent and, if yes, what is the converged
result. We tested all the real solutions and it is surprising
that the series is either divergent or the result is identical
to the ground state. This means that only the ground
state is stable in the iterative process. It explains why the
iterative process with the MP2 starting point gives only
the ground-state solution.

A different behavior has been foundwhen applying the
direct inversion in the iterative subspace (DIIS) method
[29, 30]. It turned out that this method, which is useful for

accelerating convergence, improves also the stability of
the iterative process. Most of the states are stable in the
DIIS iterative process and only between six and eight
states out of the 22–32 real ones either diverge or con-
verge to a different state (not necessarily to the ground
state). It is worth stressing that the ‘‘underground’’
solutions are iteratively unstable for all the cases tested.

Concluding remarks

In this paper we have investigated the complete set of
solutions of the CCD equations corresponding to the PPP
model of benzene. This is the largest system for which the
complete set of solutions has been obtained. We have
found that the number of solutions (for a broad range of
the resonance integral b) is surprisingly large (equal to
230), approaching the limit given by the Bézout theorem
(equal to 256). One may wonder if some peculiar prop-
erties of the PPP model are responsible for that prolifer-
ation of solutions. To this end, we have checked the
behavior of the PPP model of butadiene, which is analo-

Table 3. Correspondence
between some states of the
Pariser–Parr–Pople model of
benzene and solutions to the
coupled-cluster doubles (CCD)
equations for various b values.
Full configuration-interaction
(FCI) and CCD correlation
energies are in electron volts,
nCCD is the CCD solution
number, h (in radians) and g
parameters are defined in
Eq. (15)

Solution characteristic EFCI nCCD ECCD h g

b=)0.5 eV
1 1A�1g )5.389786 005 )8.290596 0.2430 1.6557

10 1A�1g 6.914750 138,139 7.154622±i0.234294 0.3395 0.9860

14 1A�1g 9.825925 193 11.390287 0.5647 1.4070

18 1A�1g 20.406881 200,201 12.648 277±i1.072852 0.4441 1.1293

b=)1.0 eV
1 1A�1g )3.421010 005 )3.939967 0.1589 1.2101

10 1A�1g 10.422514 160,161 10.802034±i1.050428 0.2776 1.1035

18 1A�1g 24.749882 206,207 20.032365±i1.114519 0.4639 1.0800

b=)1.5 eV
1 1A�1g )2.330250 005 )2.397334 0.0851 1.0505

11 1A�1g 15.466311 193 17.676035 0.5495 0.6366

14 1A�1g 19.687009 206,207 23.335177±i0.877270 0.4564 0.9985

18 1A�1g 29.397385 204,205 21.056124±i3.647862 0.3480 1.7948

b=)2.0 eV
1 1A�1g )1.726025 005 )1.729921 0.0495 1.0119

11 1A�1g 20.093376 194 21.991453 0.5115 0.5779

12 1A�1g 22.664453 204,205 24.340 342±i4.664894 0.1826 2.3779

18 1A�1g 34.788885 210,211 26.939140±i1.936787 0.4914 1.0048

b=)2.5 eV
1 1A�1g )1.363707 005 )1.358839 0.0319 1.0017

12 1A�1g 27.206496 201,202 27.653154±i5.484227 0.1826 2.7398

18 1A�1g 41.714245 226 70.723477 0.3813 0.9327

b=)3.0 eV
1 1A�1g )1.126551 005 )1.121438 0.0222 0.9988

12 1A�1g 31.696270 196,197 30.987726±i6.215649 0.1914 2.8482

18 1A�1g 49.302346 226 78.427410 0.2985 1.0682

b=)4.0 eV
1 1A�1g )0.836853 007 )0.833688 0.0125 0.9979

18 1A�1g 64.911337 226 93.844690 0.2165 1.1505

b=)5.0 eV
1 1A�1g )0.666635 005 )0.664763 0.0080 0.9982

18 1A�1g 80.708757 226 109.317542 0.1762 1.1598
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gous to the H4 model studied previously by Jankowski
and Kowalski [7, 8]. We have found, however, that the
CCD equations for these two models have roughly the
samenumber of solutions.We thus conclude that the large
number of solutions of the CCD equations corresponding
to the PPP model of benzene have to be related to some
special properties of a cyclic p-electron system. The
number of solutions is expected to grow exponentially for
the larger cyclic polyenes (annulenes). The known diffi-
culties with solving the CC equations for these systems
(see Ref. [21] and references therein) are undoubtedly
somehow related to this multiple-solution problem. On
the other hand, some nonstandard solutions of the CCD
equations for larger annulenes may turn out to be similar
to certain excited-state FCI solutions of these systems.
Since attaining these solutions by means of the homotopy
method seems to be out of reach in the near future, we find
it encouraging that the DIIS method [29, 30] of carrying
the iterations in the CC method proved quite effective in
assessing the stability of several multiple solutions to the
CCD equations for benzene. This has inspired us to look
for multiple solutions of the CCD equations for the next
member of the annulene family, cyclodecapentaene
(C10H10). Indeed, several new solutions were found by
combining a sort of random generation of the initial t2
amplitudes with the DIIS iterations [31].
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